Preferentially localized dynein and perinuclear dynactin associate with nuclear pore complex proteins to mediate genomic union during mammalian fertilization.
نویسندگان
چکیده
Fertilization is complete once the parental genomes unite, and requires the migration of the egg nucleus to the sperm nucleus (female and male pronuclei, respectively) on microtubules within the inseminated egg. Neither the molecular mechanism of pronucleus binding to microtubules nor the role of motor proteins in regulating pronuclear motility has been fully characterized, and the failure of zygotic development in some patients suggests that they contribute to human infertility. Based on the minus-end direction of female pronuclear migration, we propose a role for cytoplasmic dynein and dynactin in associating with the pronuclear envelope and mediating genomic union. Our results show that dynein intermediate and heavy chains preferentially concentrate around the female pronucleus, whereas dynactin subunits p150Glued, p50 and p62 localize to the surfaces of both pronuclei. Transfection of antibodies against dynein and dynactin block female pronuclear migration in zygotes. Both parthenogenetic activation in oocytes and microtubule depolymerization in zygotes significantly reduce the localization of dynein to the female pronucleus but do not inhibit the pronuclear association of dynactin. When immunoprecipitated from zygotes, p150Glued associates with nuclear pore complex proteins, as well as the intermediate filament vimentin and dynein. Antibodies against nucleoporins and vimentin inhibit pronuclear apposition when transfected into zygotes. We conclude that preferentially localized dynein and perinuclear dynactin associate with the nuclear pore complex and vimentin and are required to mediate genomic union. These data suggest a model in which dynein accumulates and binds to the female pronucleus on sperm aster microtubules, where it interacts with dynactin, nucleoporins and vimentin.
منابع مشابه
Nuclear-localized Asunder regulates cytoplasmic dynein localization via its role in the Integrator complex
We previously reported that Asunder (ASUN) is essential for recruitment of dynein motors to the nuclear envelope (NE) and nucleus-centrosome coupling at the onset of cell division in cultured human cells and Drosophila spermatocytes, although the mechanisms underlying this regulation remain unknown. We also identified ASUN as a functional component of Integrator (INT), a multisubunit complex re...
متن کاملSUN1/2 and Syne/Nesprin-1/2 Complexes Connect Centrosome to the Nucleus during Neurogenesis and Neuronal Migration in Mice
Nuclear movement is critical during neurogenesis and neuronal migration, which are fundamental for mammalian brain development. Although dynein, Lis1, and other cytoplasmic proteins are known for their roles in connecting microtubules to the nucleus during interkinetic nuclear migration (INM) and nucleokinesis, the factors connecting dynein/Lis1 to the nuclear envelope (NE) remain to be determi...
متن کاملHPS6 interacts with dynactin p150 to mediate retrograde trafficking and maturation of lysosomes
Hermansky-Pudlak syndrome 6 protein (HPS6) has originally been identified as a subunit of the BLOC-2 protein complex that is involved in the biogenesis of lysosome-related organelles. Here, we demonstrate that HPS6 directly interacts with the dynactin p150 subunit of the dynein–dynactin motor complex and acts as cargo adaptor for the retrograde motor to mediate the transport of lysosomes from t...
متن کاملCell cycle–regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase
In cultured mammalian cells, how dynein/dynactin contributes to spindle positioning is poorly understood. To assess the role of cortical dynein/dynactin in this process, we generated mammalian cell lines expressing localization and affinity purification (LAP)-tagged dynein/dynactin subunits from bacterial artificial chromosomes and observed asymmetric cortical localization of dynein and dynacti...
متن کاملHPS6 interacts with dynactin p150Glued to mediate retrograde trafficking and maturation of lysosomes.
Hermansky-Pudlak syndrome 6 protein (HPS6) has originally been identified as a subunit of the BLOC-2 protein complex that is involved in the biogenesis of lysosome-related organelles. Here, we demonstrate that HPS6 directly interacts with the dynactin p150(Glued) subunit of the dynein-dynactin motor complex and acts as cargo adaptor for the retrograde motor to mediate the transport of lysosomes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 116 Pt 23 شماره
صفحات -
تاریخ انتشار 2003